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ABSTRACT

A stationary Rossby wave, sinusoidal in longitude, is slowly switched on, and the meridional propagation of
the resulting wave front through a shear flow is examined. Initially the flow is westerly everywhere and therefore
free of critical layers. The transition from reversible to irreversible behavior as the wave amplitude is increased
is described. It is shown that under slowly varying conditions in an inviscid quasi-linear model, a steady state
is obtained if, and only if, the mean flow is decelerated by less than two-fifths of its initial value as a result of
the passage of the wave front. If this passage causes a larger mean flow reduction, a pile-up of wave activity in
the shear layer culminates in the generation of a critical layer, qualitatively as in Dunkerton’s model of gravity
wave—mean flow interaction. This qualitative picture is shown to be preserved in the quasi-linear model when
the slowly varying assumption breaks down.

Fully nonlinear calculations show that these quasi-linear results are only part of the story. Once the mean
flow is decelerated by two-fifths of its initial value in the fully nonlinear model, rapid wave breaking and
irreversible mixing occur in the shear layer. But more slowly developing wave breaking also occurs for wave
amplitudes that are too small to produce the two-fifths deceleration. Overturning of contours can be shown to
occur in the quasi-linear slowly varying model once the mean flow has been decelerated by one-fifih of its initial
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value, and this appears to be the critical value for wave breaking to occur in the nonlinear integrations.

1. Introduction

Imagine a very small amplitude stationary Rossby
wave propagating equatorward through a mean flow
on which the wave has no critical layers. Think of the
wave as being generated at a northern boundary by
slowly switching on a sinusoidal corrugation, as shown
in Fig. 1. Under these conditions the wave front will
travel at some well-defined group velocity. Behind this
front, a steady wave will be superimposed on a mean
flow which has been decelerated slightly. This mean
flow modification is reversible (in the absence of dis-
sipation); if the source is turned off, the mean flow
will return to its initial value as the wave activity relaxes
to zero.

Now suppose that the initial wave amplitude is in-
creased to the point that this linear picture breaks down.
One possibility is that the linear picture does not break
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down qualitatively until the wave decelerates the mean
flow to zero, creating a critical layer. Irreversible mixing
would certainly follow once a critical layer formed.

(By “irreversible” in this context we simply mean the

rapid generation of an enstrophy cascade to small scales
where scale-selective diffusion is assumed to exist.)
Given this scenario, it would be useful to know just
how strong.the wave, or how weak the initial mean
wind, need be for a critical layer to be induced. With
this question in mind, we analyze a slowly varying and
inviscid, quasi-linear (wave-mean flow interaction)
model. This part of our study can be thought of as the
Rossby wave analogue to Dunkerton’s (1981) analysis
for internal gravity waves. We also use a numerical
quasi-linear model to investigate cases in which the
slowly varying assumption is not accurate.
Conclusions based on quasi-linear models are nec-
essarily tentative. Therefore, we integrate a fully non-
linear model and watch for deterioration of the quasi-
linear predictions due to wave-wave interactions. We
ask if wave-wave interactions come into play before
the appearance of a critical layer and if the onset of
irreversibility in the fully nonlinear model is distinct
from that in the quasi-linear model. All of our calcu-
lations are inviscid in the region of the shear flow. Only
the initial behavior following the passage of the wave
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F1G. 1. Schematic of a Rossby wave forced at the northern boundary
and propagating equatorward into a shear zone.

front is considered; no attempt is made to follow the
solution through the breaking stage.

The plan for the paper is as follows. The mathe-
matical framework is described in section 2. In sections
3 and 4 we present some quasi-linear results in which
the slowly varying assumption is first invoked and then
relaxed. In section 5, we consider full nonlinearity.

* 2. Mathematical formulation

As shown schematically in Fig. 1, we consider a two-
dimensional non-divergent Rossby wave propagating
meridionally through a stable mean zonal flow U(y),
—o0 < y < y;. The wave may be regarded as generated
by flow past a slowly switched-on sinusoidal corruga-
tion at y = y,. This configuration approximates the
nearly horizontal propagation of large-scale stationary
waves into the tropics.

Given a nondimensional total streamfunction ¥:

¥(x,y,t)= “f u(y, dy +ef(x,y, t), (1)

we obtain predictive equations for the perturbation
vorticity { = ¢, + 0¥, and the mean zonal flow u:

GHulctyv+eJW, - JW, )] =0, (2a)
i, = — 2(um), (2b)
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where u = —y,,, v = {4, and vy = 8 — ,,. Dimensionless
quantities are related to their dimensional (primed)
counterparts through

x=kx', y=y/L, t=kUt, #=da]U,
v=vy'/¢, B=pBL*U,
e=¢,/LU,, &=Kk*L? (3)

where U is the initial value of the wind at the northern
boundary y;, ¢, = n,Us is the dimensional amplitude
of the forced wave at y;, k is the zonal wavenumber,
L is the length scale for the zonal mean shear, while ¢
and ¢ are the nondimensional measures of the strength
and zonal length scale of the wave, rt,spectlvely An
overbar refers to the zonal mean.

The initial condition and northern boundary con-
dition are

v=-[vma, 1=0 (4)
¥ =-F(t)cos(x), y=ys (5)

where F(t) is a monotonic switch-on function such
that F<0)=0and F(t= T) = 1 with T> 1. We
assume that the mean flow is constant for some distance
south of the source, before the shear zone is encoun-
tered. Under these conditions a southward propagating
wave is generated which near y; has a characteristic
meridional wavenumber |/| = [(v/&) — §]'/? and
group velocity G = —2v|[|/(I*> + 6)%. The switch-on
implies amplitude modulation over a distance |G| T.

3. A slowly varying quasi-linear model

We first simplify the problem arbitrarily by allowing
the wave to modify # through the eddy momentum
flux while neglecting the generation of higher harmon-
ics [i.e., we ignore the bracketed term in (2a)]. For
such a “quasi-linear” model,

(2y)"' 28,2 = -7, (6)

If the fractional change in v is negligible, we obtain

the familiar result

Ay, = E8/2y) = Uy) — iy, 1), (T)

where A is the “wave activity” [A(y, 0) = 0]. This
approximation is certainly valid if the wave amplitude
is sufficiently small, but it can also remain valid for
O(1) changes in i7if the fractional change in y remains
small. Assuming that the mean flow modification oc-
curs on the scale of the mean flow itself, as is the case
in the WKB solution described below, then

Ay Uy, Al iy, Au

— = = & — — (8)
Y BTy uy B—uy u

where A denotes the change due to the passage of the
front. To justify the neglect of changes in y when A/
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u is order unity, we must evidently assume that
Uy < B..

We now assume that the meridional wavelength is
much smaller than the width of the shear layer, so that
the WKB approximation can be applied. Assuming
slow amplitude modulation in space and time, we have

At+(GA)y:O 9)

where G is the local meridional group velocity. (Note
that the assumption v ~ § is also required to formally
justify the WKB approximation; if #,, were of the same
order as 3, then /> ~ v/ ~ L~%, which would be
inconsistent with the assumption of scale separation.)
If the passage of the wave front leaves in its wake a
steady wave on a modified mean flow, then GA is in-
dependent of y behind the front, where

G =—=2y|l|7 = =2y~ 233 (10)

Here | = (v/#)'/? is the local meridional wavenumber,
and we have made the long wave (small §) approxi-
mation. ‘ :
Thinking of the flux of wave activity near the source
G, A, as being prescribed, then
G, Ay _
A(y) ==~ oc a2
G(y)
The incident flux G, A4; is a function of e. For a given
€ = ¢, we plot in Fig. 2 the relationship (11) in the
steady state between A and #. We also plot in the same

(11)

FIG. 2. Graphical derivation of A, and i,.. The curved lines represent
the relationship between A4 and u, based on slowly varying theory,
that must exist in a steady state, for different forcing amplitudes e.
The straight line represents the relation between 4 and # that exists
at all times for a flow that evolves from the initial wind U. The
dashed curve marks the critical amplitude ¢, above which no steady
states can evolve from the initial wind U.
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figure the linear relation (7) between 4 and i that must
be satisfied by any solution that evolves from the given
initial mean flow U. Intersections between these two
curves represent possible steady states for the given e
and U. For € = ¢, there are two such intersections in
the figure but only the one with smaller A4 is accessible
from an initial state with 4 = 0 and & = U.

By plotting a series of such curves for different values
of ¢, it becomes evident that there exists a critical € = ¢,
beyond which no steady states exist for the given U.
Corresponding to this critical value, there is a maxi-
mum steady-state wave activity 4. and minimum mean
zonal flow #,. These critical values are found by equat-
ing the #-derivatives of 4 in Eqs. (7) and (11). From
(7), d4/0u = —1; while from (11), d4/0u = —3A4/
(2u). Therefore, 4. = 2ii,/3, so that

A.=2U/5 and u.=3U/S5. (12)

From this simple analysis we arrive at the interesting
result that steady flow is impossible if the medn wind
is reduced by more than two-fifths of its initial value.

The physical explanation for this behavior is as fol-
lows. The passing front causes a mean flow deceleration
which acts to reduce the group velocity according to
(10). In a shear layer, the deceleration and the reduc-
tion in group velocity are nonuniform, being largest in
regions with the smallest initial winds. This causes the
wave activity to pile up in such regtons; indeed, for a
steady state to emerge, the wave activity must increase
proportionately to the decrease in group velocity so
that there be no prolonged convergence of wave activity
into the shear layer. However, the increase in wave
activity again reduces the mean winds and the group
velocity. If the “two-fifths rule” is violated, that is, if
the mean flow falls below ©, = 3U/ 5, this process does
not converge; instead the slowly varying theory predicts
that the mean flow deceleration and the pile-up of wave
activity will continue until some other dynamics in-
tervenes, e.g., critical layer formation.

It remains to compute the critical forcing amplitude
.. Assume that the flow does reach a steady state be-
hind the wave front. Near the source, the wave activity
is then

4 = szsz — 627s¢s2 _ 5273
T 2y, 2i1,2 42’
Here ¥, = cos(x), so that ;2 = V. Also, g, is the eddy
potential vorticity at y = y, so that i,g, = —v¥,. If
the critical conditions are reached somewhere in the
shear flow, then

Ay = GGy = A T (ys) )2
— (2/5)(3/5) 12U T, 2y )2 (14)

If the mean flow modification near the source is neg-
ligible, so that iz; = U, we can evaluate A4, from (14)
and substitute into (13) to obtain e. This computation
can be performed using the zonal flow U for each lat-

(13)
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‘itude; the value of ¢, is then determined by minimizing
the resulting values of ¢ over latitude. Ignoring the
variation in v, critical conditions will always be reached
first at the latitude with the smallest initial mean wind.

If the mean flow modification near the source is not
negligible, then iz, = U; — A4;, and ¢, can be determined
by solving

X(1 = x)%2 = (2/5)(3/5)*2(U/ U (v v)
(15)

for x = A;/ Uy, and then substituting into (13), i.e.,
€2 = aUly,  x(1 — x)2. (16)

4. A numerical quasi-linear model

We use a numerical model to determine what hap-
pens in cases for which steady solutions are impossible.
The initial zonal mean flow is given the form

U(y) = Uo + (1 — Up) tanh?(p) (17)

with Uy = 0.5. We also set 3 = 5 and § = 0.16. This
flow is barotropically stable and there are no critical
levels. The initial profile is given by the dotted line in
Fig. 3b.

An absorbing “sponge” layer is introduced in the
region —3y, <y < —y, (with y, = 5) by adding linear
damping in the eddy vorticity tendency. More specif-
ically, we add the term —\¢{, where A(y) = sin?[#(y
+ y5)/4y]. This damping of the wave produces a mean
flow deceleration:

@ = =), = A~ Ny, (18)

The second term on the right-hand side of (18) is un-
desirable because it prevents a steady state from de-
veloping. Therefore, we suppress this term in our cal-
culations. The deceleration due to the wavefront (—A4,)
is retained within the sponge to ensure a smooth mean
flow profile at the boundary of the sponge layer.

Using a standard (second-order accurate) grid point
numerical model, we compute the evolution for various
values of the forcing parameter e. The boundary forcing
is turned on slowly according to the expression

0, t<0;
F(t)={ sin?[#t/(2T)}, O0<t<T: (19)
1, t>T,

with T = 80. The spectrum of the frequencies excited
by the forcing is centered at zero and has a width pro-
portional to 7'; since the nondimensional zonal
wavenumber is §'/2, the corresponding phase speed
spectrum has width ~ (76!/2)7! = (0.4T)"'. Our
choice for T ensures that the excitation of waves that
have critical layers in the shear flow is entirely negli-
gible. If T'is small enough that phase speeds larger than
the minimum value of U(y) are significantly excited,
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F1G. 3. (a) Minimum zonal mean wind #,,(¢) = min[#(y, t)] for
various values of e (the minimum always occurs very close to y = 0
in these integrations). The horizontal lines mark the wind speed
below which steady flow becomes impossible according to_slowly
varying theory (& = 3U/5), and the wind speed below which over-
turning of vorticity contours occurs (i = 4U/5). (b) The steady-
state # profiles obtained for two different values of ¢ (solid lines) and

' the initial profile U (dotted line).

then the flow evolution is irreversible even for infini-
tesimal forcing, in the sense that smaller and smaller
scales are generated as the integration proceeds.
Figure 3a shows #(y = 0, 1) for several values of ¢
(the minimum mean zonal flow is attained at y = 0 at
all times in these calculations). Inspecting these curves
(and others not shown), we conclude that steady flows
are obtained only if € < 0.186, or equivalently, only if
the mean flow is not reduced below # = 0.285. Since
the initial mean flow at y = 0 is 0.5, the WKB analysis
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predicts that the minimum steady-state zonal flow
should be 0.3, while the corresponding estimate of e,
based on (15-16) is 0.173. The predictions for the
slowly varying limit are quite accurate in this case. Plots
of the zonal mean flow for some of the steady solutions
are included in Fig. 3b. (For e < 0.18 and ¢ = 0.19 the
meridional grid spacing is 1/10 and 1/30, respectively.
The time step is 1/50 for all numerical integrations
described in this paper.)

With this model we can also study the unsteady so-
lutions for larger . The curve for € = 0.19 in Fig. 3a
shows, as conjectured, that # is eventually driven to
zero. Figure 4 illustrates the time development of this
solution. Overturning contours (4b) develop well be-
fore the mean flow is decelerated by the critical two-
fifths, a point we return to in section 5. After the critical
layer forms (i.e., # = 0) in (4d), the flow evolves in
a manner similar to that expected for a quasi-linear
critical layer [see, e.g., Geisler and Dickinson (1974)
and Haynes and MclIntyre (1987)]. The profiles of the
vorticity gradient v in (4c¢) and (d) show a signature
of partial reflection from the shear layer; the sinusoidal
structure north of the shear zone is evidently induced
by a standing wave component to the wave field re-
sulting from reflections from the shear layer and the
northern boundary.

If we leave the forcing on for a very long time and
then turn it off, the value ¢ = 0.186 marks a sharp
boundary between flows that return reversibly to the
original mean flow and those that do not. When the
forcing is left on for shorter times, this boundary is less
clear-cut. By slowly turning the source off at different
times, we have found that this flow relaxes back to its
initial profile as the wave recedes, even after the mean
flow is reduced below .. Indeed, by choosing the time
of the turn-off carefully, we find reversible solutions
with arbitrarily small positive iz. However, as soon as
a critical layer forms, the generation of small scales is
greatly accelerated so that, in practice, the flow becomes
irreversible.

The accuracy of the slowly varying theory in this
instance is not surprising once one evaluates the self-
consistency of the WKB approximation. Given the
equation ®,, = —/°® and a solution of the form &
= A(y) exp[if(y)], we obtain the WKB approximation
in the usual way by equating real and imaginary parts
(Ayy/A+1*=0,and 4 = 6,7"/?) and then assuming
Ayy/(AI*) < 1sothat 6,2 = [>and 4 = ['/2, For self-
~ consistency, we require

p(y) = (72,1057 < 1.

(20)

For the flow described above, the maximum value of
w is approximately 0.02.

We can reduce the accuracy of the slowly varying
assumption by reducing the value of 8. Figure 5a shows
the evolution of (0, y) for 8 = 2, with all the other
parameters as used above. For this choice of 8, u(y)
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F1G. 4. Evolution of the ¢ = 0.19 quasi-linear integration (see Fig.
3a). Total vorticity Q (left) and the zonal mean meridional vorticity
gradient v (right). The initial v profile is dotted. (a) t = 60, iy,
=~ 4U/5 = 0.4, incipient overturning of a Q contour; (b) ¢t = 80, i),
~ 3U/5 = 0.3; (¢) t = 180, note the undulations in v indicative of
partial reflection; (d) ¢ = 200, %y, == 0, critical layer formation em-
inent.

reaches values as large as 0.89. The numerically deter-
mined critical wind speed (~0.25) and the forcing
amplitude (~0.42) are underestimated by the slowly
varying theory (#. = 0.3; ¢. =~ 0.31). However, we
obtain the same qualitative result: for € less than some
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- ¢, a steady flow is achieved with # bounded well away
from zero; for e greater than e, a critical layer is induced.
Figure 5b shows the steady state  and y when e = 0.42.

5. Fully nonlinear integrations

It remains to examine how the inclusion of higher
harmonics affects the forced wave-mean flow evolution.
The numerical model is identical to that used in the

calculations in section 4 except that the nonlinear.

bracketed terms in (2a) are now retained. The Jacobian

is evaluated using spectral transforms in the zonal di-

rection and meridional finite-differencing, with a non-
dimensional grid size of Ay = 1/30. The boundary and
1initial conditions, and the sponge layer are as before,
with U(y) given by (17) and with 8 = 5 and é = 0.16.
Our intention in this model is to generate a finite
amplitude sinusoidal Rossby wave and watch it interact
with the shear layer. However, the flow tends to become
nonlinear and mix irreversibly in the vicinity of the
source (for these large forcing amplitudes), as well as
in the shear layer. This behavior may be a numerical
artifact in part. We should probably use the full non-
linear boundary condition for flow past a corrugated
wall, but instéad continue to use the simpler condition
(5). To avoid complications associated with nonlin-
earity near the source we use the artifice of gradually
increasing the nonlinearity southward of the forcing
latitude, y; = 5. Specifically, in the wave equation
(2a)—but not in the mean flow equation (2b)—we
set e(y) = € sin’[#(5 — y)/2] for 3 < y < 5, and
e = ¢ for y < 3.
~ Sixteen zonal harmonics are retained in the model,
with 'the wavenumber of the forcing equal to that of
the lowest wavenumber. No subharmonics of the forced
wave are included. A very small biharmonic diffusion

kV*tis added to the vorticity equation so as to maintain -

a smooth solution when a cascade to small scales oc-
curs; k 1s chosen to be 1.25 X 10 7%, so that the diffusion
time across a grid space is approxlmately one time unit.

Figure 6, which is the nonlinear equivalent of Fig.
3a, summarizes the results of these integrations. When
e < 0.15, steady states are obtained that are nearly
identical to their quasi-linear counterparts. For ¢
= 0.18, the evolution is very similar to that in the quasi-
linear model up to the point that the two-fifths criterion
is satisfied, at which time the wave breaks. Figure 7
shows the evolution of the absolute vorticity for thé
case ¢y = 0.18 during the period of wave breaking, 90
< t < 99. There appears to be a distinct onset of an
instability at ¢ = 96, with wavenumber 6 developing
significant amplitude. After the wave overturns, closed
contours are generated by the diffusion. It is clear in
this case, and for larger ¢, that irreversible wave break-
ing sets in long before a critical layer is formed. How-
ever, the “two-fifths rule” based on the quasi-linear
model still seems to be relevant in marking the time
at Wthh the breaking occurs.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 47, No. 6

(a)

05

0.39
0.3 0.40

’ ' \M ——0.41
M 0.42

<l

0.43

00 0 . .
0 50 100 150

200

0.75

1.00

1
0.50

(V)

FIG. 5. (a) As in Fig. 3a, but for 8 = 2. (b) Steady-state
zonal mean # and y when ¢ = 0.42.

We have not extended the integration very far be-
yond this point, since we are focusing on the onset of
irreversible mixing. As the integration proceeds, the.
amplitude of the solution builds up between the source
and the shear zone because of reflection from the
breaking region, so that the evolution then depends on
the location of the source as well as the manner in
which we have artificially turned off the nonlinearity
near the source.

Nonlinear integrations with 0.15 < ¢ < 0.18 have
the distinction of producing irreversible wave breaking

" without the mean flow being decelerated by two-fifths

of its initial value. The time required for this breaking
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FI1G. 6. As in Fig. 3a, but for the fully nonlinear model.

to develop increases as ¢ decreases. For ¢ = 0.17, it
occurs at ¢t ~ 120, and for ¢ = 0.16 at t ~ 190. The
development of the irreversible wavebreaking with e
= 0.16 is illustrated in Fig. 8. The overturning occurs
in a region of smaller zonal extent than that in Fig. 7,
but it has the same qualitative character. As in the case
with larger wave amplitude, wavenumber 6 seems to
be preferentially excited. In fact, in this case a steady
solution is obtained that closely resembles the quasi-
linear solution if four or fewer harmonics of the forced
wave are retained in the model.

By ¢ = 200, the case with € = 0.15, has not yet broken
although close inspection shows a hint of developing
time dependence. Integrations with € < 0.15 show no
instability by ¢ = 200. While we cannot rule out the
possibility that very slow instabilities will eventually
develop in these cases, we suspect that there is some-
thing special about the ¢ = 0.15 case, for it is in this
case that a north-south oriented absolute vorticity
contour is generated. The implication is that instabil-
ities of the sort seen in Figs. 7 and & develop (on time
scales of interest, at least) only on locally overturned
contours. That a locally reversed potential vorticity
gradient can drastically effect subsequent evolution has
been aptly demonstrated by Haynes (1987). [In this
regard we note the close similarity between our Figs.
7 and § and Hayne’s Fig. 6 (corresponding to his large
e simulation).]

In the slowly varying quasi-linear model, one can
show that an overturning contour develops as soon as
the mean flow is decelerated by one-fifth of its initial
value. Incipient overturning of a contour implies that
the meridional gradient of the absolute vorticity field
vanishes, which translates into the criterion 2|4, = g,
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for a disturbance of the form g = § exp(ix) + (cc).
But for a stationary slowly varying wave,

1Gy,1* = *141* = |§|*q,/u = Ag)*/u  (21)
Therefore, overturning first occurs when A4 = /4. Us-
ing (7), this condition reduces to 4 = U/5 or, equiv-
alently, u = 4U/5.

We have confirmed that the steady solutions ob-
tained in the quasi-linear numerical integrations of
section 4 contain overturning contours ( much like the
solution shown in Fig. 4b) when 0.15 < ¢ < 0.185. As
seen in Fig. 3, in these solutions the mean flow at y
= 0 has been decelerated by an amount between one-
fifth and two-fifths of its initial value [U(0) = 0.5].
By modifying the argument leading to (15 )—replacing
the factor (2/5)(3/5)3? by (1/5)(4/5)3/>—we con-
firm that overturning should commence at the value
e ~ 0.15.

Our interpretation of the nonlinear integrations is
as follows. If e is sufficiently large to decelerate the mean
flow by two-fifths of its initial value, the runaway in-
crease in wave amplitude predicted by the quasi-linear
model quickly results in irreversible wave breaking,
long before the mean flow is decelerated to the point
of critical layer formation. For somewhat smaller values
of ¢, for which the mean flow deceleration is between
one- and two-fifths of the initial flow, we presume that
there are solutions of the fully nonlinear model which
closely resemble their quasi-linear .counterparts, and
which, therefore, evolve into steady states in which the
meridional potential vorticity gradient is locally re-
versed. However, these solutions are unstable, and the
instabilities eventually produce irreversible wave
breaking once again.

It is interesting to ask if these considerations are still
relevant if a critical latitude exists for the incident wave
in the initial mean flow. Suppose, in particular, that,
u = Ayso that there is a critical latitude for a stationary
wave at y = 0. Ignoring coefficients of order unity,
wave breaking occurs when A =~ # or equivalently when
7, the meridional particle displacement, is of the same
order as the inverse of the local wavenumber /, i.e.,

Y/~ (a/B)!? or y*~i’/B=Ap/B.
Therefore, breaking occurs for y ~ Ygreax, Where
Y%REAK =~ 5‘1/2/A3

However, the WKB assumption breaks down for this
shear flow where ly < 1, i.e.,

¥ < Ywks = A/B.
Note that
(Yereak/Ywks)® ~ B*Y2/A® = (Yno/Ywks)®, (22)

where Yn. = ($/A)!/?. Here Yy is the critical layer
width, or the size of the particle displacements near y
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FIG. 7. Evolution of the total vorticity field at the time of breaking
in the fully nonlinear model for ¢ = 0.18.

= 0, in the nonlinear critical layer valid for Y./ Ywks
< 1. Our detailed predictions concerning wave breaking
are dependent on the WKB approximation, and there-
fore require that Ypreax > Ywks. From (22), this will
not hold if Yni <€ Ywks, the case for which small-
amplitude nonlinear critical layer theory holds. Only
if YL > YWKB can Ygreak be larger than Ywks. In this
case, wave breaking will occur well before the critical
layer is reached, and the analysis described here should

be relevant. See Held and Phillips (1987) and Robinson
(1988) for examples of waves overturning befor
reaching their critical layers. :

6. Summary and concluding remarks

In this paper we consider the propagation of a Rossby
wave, generated by slowly switching on stationary
forcing, through a shear flow which is initially free of
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critical levels. We examine how linear theory breaks
down as the wave amplitude increases, using both in-
viscid quasi-linear (wave-mean flow interaction) and
fully nonlinear barotropic models. Two simple rules
emerge from a WKB analysis of the quasi-linear model:

1) Ifthe mean zonal flow is decelerated by less than
two-fifths of its original value by the passage of the
wave front, the quasi-linear model reaches a steady
state; if the deceleration is greater than this critical
amount, a runaway pile-up of wave activity results,
due to the same group velocity feedback that Dunk-
erton (1981) analyzes in a gravity wave model. A nu-
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merical quasi-linear model shows that the associated
mean flow deceleration culminates in the creation of
a critical layer. It also shows that this qualitative be-
havior continues to hold for a wave that is not slowly-
varying, although the required mean flow deceleration
is somewhat greater than the two-fifths required in the
slowly varying limit.

2) Ifthe mean flow deceleration is greater than one-
fifth but less than two-fifths, the steady state that evolves
in the quasi-linear model has absolute vorticity con-
tours that overturn locally.

Both of these results have implications for fully non-
linear integrations. When the mean flow is decelerated
by two-fifths of its initial value, rapid wave breaking
ensues. The mean zonal flow continues to decelerate
beyond this point but, unlike the quasi-linear model,
irreversible mixing is generated long before a critical
layer forms. If the forcing amplitude is such that the
quasi-linear model predicts a steady flow with over-
turning streamlines and mean flow deceleration be-
tween one- and two-fifths of the initial flow, the non-
linear model slowly develops an instability that even-
tually produces irreversible mixing.

We close with several additional points:

¢ It is not clear that an overturning streamline is
critical for instability in this system, or if the growth
rates simply increase rapidly at this point. The well-
known instability of Rossby waves on a uniform mean
flow on the beta-plane shows that this cannot be a gen-
eral requirement [Lorenz (1972)]. The small aspect
ratio (meridional scale /zonal scale) of the waves con-
sidered here is probably important in this regard [as it
was in Haynes (1987)].

e The difference in forcing amplitude between a
wave breaking when the mean flow is decelerated by
one-fifth rather than two-fifths of its initial value is not
very large. The mean flow deceleration is proportional
to the wave amplitude squared when the local wave
amplitude is prescribed, but the positive group velocity
feedback causes the deceleration to be even more sen-
sitive to the forcing amplitude. For the case analyzed
in section 4, ¢ need only be increased from 0.15 to
0.185 to double the resulting deceleration from one-
fifth to two-fifths.

¢ The relevance of these results for the atmosphere
can be questioned in several ways. Breaking of vertically
propagating planetary waves is of central importance
to the dynamics of the middle atmosphere (McIntyre
and Palmer 1983). However, these waves break not
only because of propagation into regions of weak mean
winds but also because of their increasing amplitude
with height, due to the density decrease. More seriously,
wave paths in the y—z plane can change in response to
the evolving mean flow, a complication that has no
analogue in our simple barotropic example. A baro-
tropic model would appear to be more relevant to the
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quasi-horizontal propagation of planetary waves from
midlatitudes into the tropics. However, the neglect of
the restoring forces on the mean flow, particularly the
acceleration by the Hadley cell, remains an unrealistic

feature. Moreover, most disturbances in the tropo--

sphere have critical latitudes; the case without critical
latitudes that we have analyzed is the exception rather
than the rule. Yet we believe that an understanding of
‘the wave breaking problem posed here is a useful step-
ping-stone towards understanding the breaking of large
amplitude waves in the presence of a critical layer and
restoring forces.
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